<b>BGVAR</b>: Bayesian Global Vector Autoregressions with Shrinkage Priors in <i>R</i>

نویسندگان

چکیده

This document introduces the R package BGVAR to estimate Bayesian global vector autoregressions (GVAR) with shrinkage priors and stochastic volatility. The treatment of GVARs allows include large information sets by mitigating issues related overfitting. often improves inference as well out-of-sample forecasts. Computational efficiency is achieved using C++ considerably speed up time-consuming functions. To maximize usability, includes numerous functions for carrying out structural forecasting. These generalized impulse response functions, forecast error variance, historical decompositions conditional

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Priors about Observables in Vector Autoregressions

Standard practice in Bayesian VARs is to formulate priors on the autoregressive parameters, but economists and policy makers actually have priors about the behavior of observable variables. We show how this kind of prior can be used in a VAR under strict probability theory principles. We state the inverse problem to be solved and we propose a numerical algorithm that works well in practical sit...

متن کامل

Bayesian Vector Autoregressions

This article provides an introduction to the burgeoning academic literature on Bayesian Vector Autoregressions, benchmark models for applied macroeconomic research. We first explain Bayes’ theorem and the derivation of the closed-form solution for the posterior distribution of the parameters of the model given data. We further consider parameter shrinkage, a distinguishing feature of the prior ...

متن کامل

Shrinkage Priors for Bayesian Prediction

We investigate shrinkage priors for constructing Bayesian predictive distributions. It is shown that there exist shrinkage predictive distributions asymptotically dominating Bayesian predictive distributions based on the Jeffreys prior or other vague priors if the model manifold satisfies some differential geometric conditions. Kullback– Leibler divergence from the true distribution to a predic...

متن کامل

Data-based priors for vector autoregressions with drifting coefficients

This paper proposes full-Bayes priors for time-varying parameter vector autoregressions (TVP-VARs) which are more robust and objective than existing choices proposed in the literature. We formulate the priors in a way that they allow for straightforward posterior computation, they require minimal input by the user, and they result in shrinkage posterior representations, thus, making them approp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Software

سال: 2022

ISSN: ['1548-7660']

DOI: https://doi.org/10.18637/jss.v104.i09